1	i	$\log a + \log (b^t)$ www	B1	condone omission of base	
		clear use of $\log (b^t) = t \log b \operatorname{dep}$	B1	throughout question	2
	ii	(2.398), 2.477, 2.556, 2.643, 2.724 points plotted correctly f.t. ruled line of best fit f.t.	T1 P1 1	On correct square	3
	iii	$\log a = 2.31$ to 2.33	M1	ft their intercept	
		a = 204 to 214	A1		
		$\log b = 0.08 \text{ approx}$	M1	ft their gradient	
		b = 1.195 to 1.215	A1		4
	iv	eg £210 million dep	1	their $\pounds a$ million	1
	v	$\frac{\log 1000 - \text{their intercept}}{\approx} \approx \frac{3 - 2.32}{2}$	M1		
		their gradient 0.08 = 8.15 to 8.85	A1	or B2 from trials	2

3	(i) 0.23 c.a	1		
	(ii) 0.1 or	1	10 ⁻¹ not sufficient	
	(iii) $x + 2$) or $12x + 8$	1		4
	(iv) $y = 10^{3x+2}$ o.e.	1		4
		5		

4	(i) 3 _a x	2	M1 for 4 $\log_a x$ or $-\log_a x$; or $\log x^3$	
	ii) $b = \frac{1000}{c}$	2	M1 for 1000 or 10 ³ seen	4

5	i	$\log_{10} y = \log_{10} k + \log_{10} 10^{ax}$	M1		
		$\log_{10} y = ax + \log_{10} k$ compared	M1		2
		to y = mx+c			
	ii	2.9(0), 3.08, 3.28, 3.48, 3.68	T1	condone one error	
		plots [tol 1 mm]	P1f.t		
		ruled line of best fit drawn	L1f.t.		3
	iii	intercept = 2.5 approx	M1	or $y - 2.7 = m(x - 1)$	
		gradient = 0.2 approx	M1		
		$y = \text{their } 300x \ 10^{x(\text{their } 0.2)}$	M1f.t.		3
		or $y = 10^{(10012.5 + 10010.2x)}$			
	iv	subst 75000 in any x/y eqn	M1		
		subst in a correct form of the	M1		
		relationship		B3 with evidence of valid working	3
		11,12 or 13	A1		
	V	"Profits change" or any reason for	R1	too big, too soon	1
		this.			

6	(i) $_{10} y = 0.5x + 3$	B3	B1 for each term scored in either part	
	(ii) $y = 10^{0.5x + 3}$ isw	2	o.e. e.g. $y = 1000 \times 10^{\sqrt{x}}$	5

7	i	A 23	2	M1 for 5, 7, 9 etc or AP with $a = 5$, $d = 2$	2
		B 24	2	M1 for $51 = 5 + 2(n - 1)$ o.e.	2
		C 480	2	M1 for attempted use of sum of AP formula eq $20/2[10+19\times 2]$	2
	ii	A 11.78 – 11.80	2		
		B 5 x $1.1^{n-1} > 50$ $1.1^{n-1} > 10$ $(n-1) \log 1.1 > 1$ $n-1 > 1/\log 1.1$	B1 B1 L1 A1	Or other step towards completion (NB answer given)	
		n = 26	1	independent	

PhysicsAndMathsTutor.com