1	i	$\begin{aligned} & \log a+\log \left(b^{t}\right) \text { www } \\ & \text { clear use of } \log \left(b^{t}\right)=t \log b \text { dep } \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	condone omission of base throughout question	2
	ii	$\text { (2.398), 2.477, 2.556, 2.643, } 2.724$ points plotted correctly f.t. ruled line of best fit f.t.	$\begin{aligned} & \text { T1 } \\ & \text { P1 } \\ & 1 \end{aligned}$	On correct square	3
	iii	$\begin{aligned} & \log a=2.31 \text { to } 2.33 \\ & a=204 \text { to } 214 \\ & \log b=0.08 \text { approx } \\ & b=1.195 \text { to } 1.215 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	ft their intercept ft their gradient	4
	iv	eg $£ 210$ million dep	1	their £ $a_{\text {million }}$	1
	v	$\begin{aligned} & \frac{\log 1000-\text { their intercept }}{\text { their gradient }} \approx \frac{3-2.32}{0.08} \\ & =8.15 \text { to } 8.85 \end{aligned}$	M1 A1	or B2 from trials	2

3	(i) 0.23 c.a	1		
	(ii) 0.1 or 1 (iii) $x+2)$ or $12 x+8$ (iv) $y=110^{3 x+2}$ o.e. 1 5			

4	(i) 3${ }^{2} x$ ii) $b=\frac{1000}{c}$	2	M 1 for $4 \log _{2} x$ or $-\log _{2} x ;$ or $\log ^{3}{ }^{3}$	
M 1 for 1000 or 10^{3} seen				

6	(i) ${ }_{10} y=0.5 x+3$ (ii) $y=10^{0.5 x+3}$ isw	$\begin{aligned} & \hline \text { B3 } \\ & 2 \end{aligned}$	B1 for each term scored in either part o.e. e.g. $y=1000 \times 10^{\sqrt{x}}$	
				5

7	ii	A 23 B 24 C 480 A $11.78-11.80$ B $5 \times 1.1^{\mathrm{n}-1}>50$ $1.1^{\mathrm{n}-1}>10$ $(\mathrm{n}-1) \log 1.1>1$ $\mathrm{n}-1>1 / \log 1.1$ $\mathrm{n}=26$		M1 for 5, 7, 9 etc or AP with $a=5, d$ $=2$ M1 for $51=5+2(n-1)$ o.e. M1 for attempted use of sum of AP formula eg 20/2[10+19×2] Or other step towards completion (NB answer given) independent	2

